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We study the efficiency of greedy type algorithms with regard to redundant
dictionaries in Hilbert space and we prove a general result which gives a sufficient
condition on a dictionary to guarantee that the pure greedy algorithm is near best
in the sense of power decay of error of approximation. We discuss also some impor-
tant examples. It is already known (see DeVore and Temlyakov, Adv. Comput.
Math. 5 (1996), 173�187) that the Pure Greedy Algorithm for some dictionaries has
a saturation property. We construct an example which shows that a natural
generalization of the Pure Greedy Algorithm also has a saturation property. Next
we discuss some new phenomena which occur in approximation by a greedy type
algorithm with regards to a highly redundant dictionary. � 1999 Academic Press

1. INTRODUCTION

Nonlinear approximation is an important tool in many numerical
algorithms. We consider in this paper one particular method of nonlinear
approximation, namely, m-term approximation. The m-term approxima-
tion is used in image and signal processing as well as in the design of neural
networks. One of the basic questions in nonlinear approximation is how to
construct an algorithm which realizes best or near best approximation.
This question was discussed in many papers for different settings (see for
instance [B, DDGS1, DDGS2, DJP, DMA, DT1, DT2, J, T1, T2]). In
this paper we present some recent results in studying the settings discussed
in [DT1] and [DT2]. The major question we try to answer is the following:
How does redundancy effect the efficiency of best m-term approximation
and the efficiency of greedy type algorithms with regards to a given dictionary?

We shall confine ourselves to studying in this paper only approximation
in Hilbert space. Let H be a real, separable Hilbert space equipped with an
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inner product ( } , } ) and the norm &x& :=(x, x)1�2. We briefly recall
some definitions and notations from [DT1] and [DT2]. We call a system
D of elements (functions) from H a dictionary if each g # D has norm one
(&g&=1) and its linear span is dense in H.

We let 7m(D) denote the collection of all functions in H which can be
expressed as a linear combination of at most m elements of D. Thus each
function s # 7m :=7m(D) can be written in the form

s= :
g # 4

cgg, 4/D, |4|�m, (1.1)

with the cg # R.
For a function f # H, we define its m-term approximation error by

_m( f ) :=_m( f, D) := inf
s # 7m

& f&s&. (1.2)

The quantity _m( f, D) gives the best possible error of approximation of f
by a linear combination of m elements from a given dictionary D. We
define now an algorithm (Pure Greedy Algorithm) which realizes the best
m-term approximation in the particular case when D is an orthonormal
basis for H.

We describe this algorithm for a general dictionary D (in which case it
does not generally produce a best approximation). If f # H, we let g=
g( f ) # D be an element from D which maximizes |( f, g) |. We shall
assume for simplicity that such a maximizer exists; if not, some modifica-
tions are necessary in the algorithms that follow. We define

G( f ) :=G( f, D) :=( f, g) g (1.3)

and

R( f ) :=R( f, D) :=f &G( f ).

Pure Greedy Algorithm. We define R0( f ) :=R0( f, D) :=f and
G0( f ) :=0. Then, for each m�1, we inductively define

Gm( f ) :=Gm( f, D) :=Gm&1( f )+G(Rm&1( f )),
(1.4)

Rm( f ) :=Rm( f, D) :=f &Gm( f )=R(Rm&1( f )).

The above algorithm is greedy in the sense that at each iteration it
approximates the residual Rm( f ) as best possible by a single function from
D. One of the advantages of the Pure Greedy Algorithm is that it is
simple��the repetition of one basic step.
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In Section 2 we present some partial progress in the following general
problem.

Problem 1.1. Let 0<r�1�2 be given. Characterize dictionaries D

which possess the following property: For any f # H such that

_m( f, D)�m&r, m=1, 2, ...,

we have

& f&Gm( f, D)&�C(r, D) m&r, m=1, 2, ... .

We impose the restriction r�1�2 in Problem 1.1 because of the following
result from [DT1]. We constructed in [DT1] a dictionary D=[.k]�

k=1

such that for the function f =.1+.2 we have

& f&Gm( f, D)&�m&1�2, m�4.

It is clear that _m( f, D)=0 for m�2. This example of a dictionary shows
that in general we cannot get a better than m&1�2 rate of approximation by
the Pure Greedy Algorithm even if we impose extremely tough restrictions
on _m( f, D). We call this phenomenon a saturation property.

In Section 2 we give a sufficient condition on D to have the property
formulated in Problem 1.1. We consider dictionaries which we call *-quasi-
orthogonal.

Definition 1.1. We say D is a *-quasiorthogonal dictionary if for any
n # N and any gi # D, i=1, ..., n, there exists a collection .j # D, j=1, ..., M,
M�N :=*n, with the properties

gi # XM :=span(.1 , ..., .M); (1.5)

and for any f # XM we have

max
1� j�M

|( f, .j) |�N&1�2 & f &. (1.6)

Remark 1.1. It is clear that an orthonormal dictionary is a 1-quasi-
orthogonal dictionary.

We shall prove in Section 2 the following theorem and its slight generali-
zation on an asymptotically *-quasiorthogonal dictionary. Examples of
asymptotically *-quasiorthogonal dictionaries are also given in Section 2.
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Theorem 1.1. Let a given dictionary D be *-quasiorthogonal and let
0<r<(2*)&1 be a real number. Then for any f such that

_m( f, D)�m&r, m=1, 2, ...,

we have

& f&Gm( f, D)&�C(r, *) m&r, m=1, 2, ... .

In Section 3 we consider a generalization of the Pure Greedy Algorithm.
We study the n-Greedy Algorithm which differs from the Pure Greedy
Algorithm in the basic step: Instead of finding a single element g( f ) # D

with the largest projection of f on it, we are looking for n elements
g1( f ), ..., gn( f ) # D with the largest projection Gn( f, D) of f onto their
span. It is clear that

& f&Gn( f, D)&�& f&Gn( f, D)&.

However, we construct in Section 3 an example of a dictionary D and a
nonzero function f # 76n(D) such that

& f&Gn
m( f, D)&�C(nm)&1�2 & f &. (1.7)

This relation implies that like the Pure Greedy Algorithm the n-Greedy
Algorithm has a saturation property (for details see Section 3).

Section 4 deals with approximation of functions in L2 . We consider the
periodic one-variable case. In the linear theory of approximation there is a
powerful discretization method which allows us to reduce an approxima-
tion problem for smooth functions to the corresponding problem in a finite
dimensional subspace, for instance, in the space T(n) of trigonometric
polynomials of degree n. In Section 4 we make an attempt to use the idea
of discretization in the case of nonlinear approximation with regard to a
highly redundant dictionary. The difficulty arises in studying nonlinear
algorithms, for instance, the Pure Greedy Algorithm. The standard way of
studying a linear approximation problem for classes of smooth functions is
the following. We expand a function f into a series

f =:
s

fs ,

and get some restrictions on & fs& from the assumption about smoothness
of f. Then we deal with each fs separately and using the linearity of the
operator under investigation we sum the corresponding errors. It is clear
that this method does not work for a nonlinear algorithm. For instance, if
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we take a dictionary D=[.k]�
k=1 from Theorem 4.1 in [DT1] we have for

f =.1+.2

& f&Gm( f, D)&�Cm&1�2

despite the relations

.i=G1(.i , D), i=1, 2.

In Section 4 we study among other problems the efficiency of the Pure
Greedy Algorithm in the Ho� lder smoothness class H r

2 . We consider a
highly redundant dictionary TV that consists of all trigonometric polyno-
mials t with &t&2=1 and such that all nonzero Fourier coefficients of t are
of the same absolute value. We prove that redundancy helps very much in
this particular case. We obtain an exponential decay of the error: For any
f # H r

2 we have

& f&Gm( f, TV)&2�C(r) e&A(rm)1�2

with absolute positive constant A.
We denote by C various positive absolute constants and by C with

arguments or indices positive numbers which depend on the arguments
indicated.

2. SOME SPECIAL REDUNDANT DICTIONARIES

In this section we prove Theorem 1.1 and discuss *-quasiorthogonal
dictionaries. We begin with a numerical lemma.

Lemma 2.1. Let three positive numbers :<#�1, A>1 be given and let
a sequence of positive numbers 1�a1�a2� } } } satisfy the condition: If for
some & # N we have

a&�A&&:

then

a&+1�a&(1&#�&). (2.1)

Then there exists B=B(A, :, #) such that for all n=1, 2, ... we have

an�Bn&:.

121GREEDY ALGORITHMS



Proof. We have a1�1<A which implies that the set

V :=[&: a&�A&&:]

does not contain &=1. We prove now that for any segment [n, n+k]/V
we have k�C(:, #) n. Indeed, let n�2 be such that n&1 � V, which means

an&1<A(n&1)&:, (2.2)

and [n, n+k]/V, which in turn means

an+ j�A(n+ j)&:, j=0, 1, ..., k. (2.3)

Then by the condition (2.1) of the lemma we get

an+k�an `
n+k&1

&=n

(1&#�&)�an&1 `
n+k&1

&=n

(1&#�&). (2.4)

Combining (2.2)�(2.4) we obtain

(n+k)&:�(n&1)&: `
n+k&1

&=n

(1&#�&). (2.5)

Taking logarithms and using the inequalities

ln(1&x)�&x, x # [0, 1);

:
m&1

&=n

&&1�|
m

n
x&1 dx=ln(m�n),

we get from (2.5)

&: ln
n+k
n&1

� :
n+k&1

&=n

ln(1&#�&)�& :
n+k&1

&=n

#�&� &# ln
n+k

n
.

Hence

(#&:) ln(n+k)�(#&:) ln n+: ln
n

n&1
,

which implies

n+k�2:�#&:n

and

k�C(:, #) n.
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Let us take any + # N. If + � V we have the desired inequality with B=A.
Assume + # V, and let [n, n+k] be the maximal segment in V containing
+. Then

a+�an&1�A(n&1)&:=A+&: \n&1
+ +

&:

. (2.6)

Using the inequality k�C(:, #) n proved above we get

+
n&1

�
n+k
n&1

�C1(:, #). (2.7)

Substituting (2.7) into (2.6) we complete the proof of Lemma 2.1 with
B=AC1(:, #):. K

Proof of Theorem 1.1. Let &(r, *) be such that for &>&(r, *) we have

(*(&+1))&1�(r�2+3�(4*))�&.

Take two positive numbers C�&(r, *)r and } which will be chosen later.
We consider the sequence a& :=1 for &<&(r, *) and a& :=& f&&2, &�

&(r, *), where

f& :=f &G&( f, D).

The assumption _1( f, D)�1 implies

a&(r, *) :=& f&(r, *) &2�& f1&2�1.

Let us assume that for some & we have a&�C2&&2r. We want to prove that
for those same & we have

a&+1�a&(1&#�&)

with some #>2r. We shall specify the numbers C and } in this proof. The
assumptions C�&(r, *)r and a&�C2&&2r imply &�&(r, *) and & f&&�C&&r,
or

&&r�C&1 & f&&. (2.8)

We know that f& has the form

f&= f& :
&

i=1

ci, i , , i # D, i=1, ..., &.
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Therefore, by the assumption of Theorem 1.1 we have

_[(1+}) &]+1( f&)�_[}&]+1( f )<(}&)&r,

where [x] denotes the integer part of the number x. This inequality implies
that there are l :=[(1+}) &]+1 elements g1 , ..., gl # D such that

" f&& :
l

i=1

ci gi"�(}&)&r. (2.9)

Now we use the assumption that D is a *-quasiorthogonal dictionary.
We find M�N=*l elements .j # D, j=1, ..., M, satisfying the properties
(1.5) and (1.6). Denote by u an orthogonal projection of f& onto XM=
span(.1 , ..., .M) and set v :=f&&u. The property (1.5) and the inequality
(2.9) imply

&v&�(}&)&r,

and, therefore, by (2.8) we have

&u&2=& f&&2&&v&2�& f&&2 (1&(C}r)&2).

Making use of property (1.6) we get

sup
g # D

|( f& , g) |� max
1� j�M

|( f& , .j) |= max
1� j�M

|(u, .j) |�N&1�2 &u&.

Hence,

& f&+1&2�& f&&2&&u&2�N

�& f&&2 (1&(1&(C}r)&2)(*([(1+}) &]+1))&1).

It is clear that taking a small enough }>0 and a sufficiently large C we can
make for &�&(r, *)

&(1&(C}r)&2)(*([(1+}) &]+1))&1�#>2r.

With the C as chosen we get a sequence [a&]�
&=1 satisfying the hypotheses

of Lemma 2.1 with A=C2, :=2r, #>:. Applying Lemma 2.1 we obtain

& fn&=a1�2
n �C(r, *) n&r, n=1, 2, ...,

which completes the proof of Theorem 1.1. K

The above proof of Theorem 1.1 gives a slightly more general result, with
a *-quasiorthogonal dictionary replaced by an asymptoticaly *-quasiortho-
gonal dictionary. We formulate the corresponding definition and statements.
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Definition 2.1. We say D is an asymptotically *-quasiorthogonal
dictionary if for any n # N and any gi # D, i=1, ..., n, there exists a collec-
tion .j # D, j=1, ..., M, M�N(n), with the properties

lim sup
n � �

N(n)�n=*;

gi # XM :=span(.1 , ..., .M); (1.5a)

and for any f # XM we have

max
1� j�M

|( f, .j) |�N(n)&1�2 & f &. (1.6a)

Theorem 2.1. Let a given dictionary D be asymptotically *-quasiortho-
gonal and let 0<r<(2*)&1 be a real number. Then for any f such that

_m( f, D)�m&r, m=1, 2, ...,

we have

& f&Gm( f, D)&�C(r, *) m&r, m=1, 2, ... .

In the proof of this theorem we use the following Lemma 2.2 instead of
Lemma 2.1.

Lemma 2.2. Let four positive numbers :<#�1, A>1, U # N be given
and let a sequence of positive numbers 1�a1�a2� } } } satisfy the condition:
If for some & # N, &�U we have

a&�A&&:

then

a&+1�a&(1&#�&).

Then there exists B=B(A, :, #, U) such that for all n=1, 2, ... we have

an�Bn&:.

We proceed now to a discussion of *-quasiorthogonal dictionaries.

Proposition 2.1. Let a system [.1 , ..., .M] and its linear span XM

satisfy (1.6). If M=N and dim XM=N, then [.j]N
j=1 is an orthonormal

system.
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Proof. Our proof is by contradiction. The system [.j]N
j=1 is normalized

and we assume that it is not orthogonal. Consider a system [vj]N
j=1

biorthogonal to [.j]N
j=1 :

(.i , vj)=$i, j , 1�i, j�N.

Our assumption implies that [vj]N
j=1 is also not orthogonal. Consider

uj :=vj �&vj&, j=1, 2, ..., N,

and form a vector

yt :=N&1�2 :
N

i=1

ri (t) ui ,

where the ri (t) are the Rademacher functions. Then for all j=1, 2, ..., N
and t # [0, 1] we have

|( yt , .j) |=N&1�2 |(uj , .j) |�N &1�2; (2.10)

and

&yt &2=N&1 :
N

i=1

(u i , ui)+N &1 :
i{ j

ri (t) rj (t)(ui , uj)

=1+2N &1 :
1�i< j�N

ri (t) r j (t)(ui , uj).

From this we get

|
1

0
&yt &4 dt=1+4N&2 :

1�i< j�N

|(u i , uj) |2>1.

This inequality implies that for some t* we have &yt*&>1 and by (2.10) for
this t* we get for all 1� j�N

|( yt* , .j) |<N &1�2 &yt*&,

which contradicts (1.6).

Definition 2.2. For given +, #�1 a dictionary D is called (+, #)-semi-
stable if for any gi # D, i=1, ..., n, there exist elements hj # D, j=1, ..., M
�+n, such that

gi # span[h1 , ..., hM]
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and for any c1 , ..., cM we have

" :
M

j=1

cjh j"�#&1�2 \ :
M

j=1

c2
j +

1�2

. (2.11)

Proposition 2.2. A (+, #)-semistable dictionary D is +#-quasiorthogonal.

Proof. It is clear from (2.11) that [h1 , ..., hM] are linearly independent.
Let �1 , ..., �M be the biorthogonal system to [h1 , ..., hM]. We shall derive
from (2.11) that for any a1 , ..., aM we have

" :
M

j=1

aj �j"�#1�2 \ :
M

j=1

a2
j +

1�2

. (2.12)

Indeed, using the representation

g= :
M

j=1

cj (g) hj

and (2.11) we get

" :
M

j=1

aj �j"= sup
&g&�1 � :

M

j=1

aj �j , g�= sup
&g&�1

:
M

j=1

a jc j (g)

� sup
&(c1 ,..., cM )&�# 1�2

:
M

j=1

ajcj=#1�2 \ :
M

j=1

a2
j +

1�2

.

Take any f # span[h1 , ..., hM]=span[�1 , ..., �M]. Let

f = :
M

j=1

aj ( f ) � j .

Then

( f, hj) =aj ( f ).

The inequality (2.12) implies

max
1� j�M

|aj ( f )|�(#M)-1�2 & f &�(#+n)-1�2 & f &.

The proof of Proposition 2.2 is complete. K

We give now two concrete examples of asymptotically *-quasiorthogonal
dictionaries.
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Example 2.1. The dictionary / :=[ f =|J |&1�2/J , J/[0, 1)] where /J

is the characteristic function of an interval J is an asymptotically 2-quasi-
orthogonal dictionary.

Proof. The statement of this example follows from Remark 1.1 and
from the known simple Lemma 2.3.

Lemma 2.3. For any system of intervals Ji /[0, 1), i=1, ..., n, there
exists a system of disjoint intervals J d

i /[0, 1), i=1, ..., 2n+1, [0, 1)=
�2n+1

i=1 J d
i , such that each Ji can be represented as a union of some J d

j .

Proof. Our proof is by induction. Let n=1 and J1=[a, b). Take
Jd

1=[0, a), J d
2=[a, b), and J d

3=[b, 1). Assume now that the statement is
true for n&1. Consider n intervals J1 , ..., Jn&1 , Jn . Let J d

j =[aj , aj+1),
j=1, ..., 2n&1 be the disjoint system of intervals corresponding to
J1 , ..., Jn&1 and let Jn=[a, b). Then for at most two intervals J d

k and J d
l we

have a # J d
k and b # J d

l . If k=l we split J d
k into three intervals [ak , a),

[a, b), and [b, ak+1). If k{l we split each J d
k and J d

l into two intervals
[ak , a), [a, ak+1) and [al , b), [b, al+1). In both cases the total number of
intervals is 2n+1. K

Another corollary of Lemma 2.3 can be formulated as follows.

Example 2.2. The dictionary P(r) that consists of functions of the
form f =p/J , & f &=1, where p is an algebraic polynomial of degree r&1
and /J is the characteristic function of an interval J, is asymptotically
2r-quasiorthogonal.

Theorems 1.1 and 2.1 work for small smoothness r<(2*)&1. It is known
(see [DT1], Theorem 4.1) that there are dictionaries which have the
saturation property for the Pure Greedy Algorithm. Namely, there is a
dictionary D such that

sup
f # 72 (D)

& f&Gm( f, D)&�& f &�Cm&1�2.

We shall prove that the dictionary / from Example 2.1 does not have the
saturation property.

Theorem 2.2. For any f # 7n(/) we have

& f&Gm( f, /)&�\1&
1

2n+1+
m�2

& f &.
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Proof. We prove a variant of Theorem 2.2 for functions of the form

f = :
n

j=1

cjgIj
, .

n

j=1

Ij=[0, 1), gJ :=|J | &1�2 /J , (2.13)

where the I1 , ..., In are disjoint.

Lemma 2.4. For any f of the form (2.13) we have

& f&Gm( f, /)&�(1&1�n)m�2 & f &.

Proof. We begin with the following lemma.

Lemma 2.5. Let I1=[a, b) and I 2=[b, d) be two adjacent intervals.
Assume that a function f is integrable on I 1 and equals a constant c on I 2.
Then we have the inequality (gI :=|I | &1�2 /I)

|( f, gJ) |�max( |( f, gI1) |, |( f, gI1 _ I2) | ) (2.14)

for any J=[a, y), b� y�d. Moreover, if the right hand side in (2.14) is
nonzero we have a strict inequality in (2.14) for all b< y<d.

Proof. Denote

A :=|
I1

f (x) dx.

Then we have

( f, gJ)=|J |&1�2 \A+|
y

b
c dx+=(|I1|+ y&b)&1�2 (A+c( y&b)),

hence

( f, gJ) =
P+cy

(Q+ y)1�2 , b� y�d,

where P=A&cb and Q=|I1|&b. Let z=(Q+ y)1�2. Then

P+cy
(Q+ y)1�2=(P+c(z2&Q))�z=(P&cQ)�z+cz=: F(z).
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In the case P&cQ=0, c{0 or P&cQ{0, c=0 the statement is trivial. It
remains to consider the case P&cQ{0, c{0. Assume P&cQ<0, c>0.
Then

F $(z)=&
P&cQ

z2 +c>0

and the statement is true. Assume P&cQ>0, c>0. Then

F"(z)=2
P&cQ

z3 >0, z>0.

It follows that F(z)>0 is a convex function and the statement is also
true. K

We use this lemma to prove one more lemma.

Lemma 2.6. For each function f of the form (2.13) the maxJ |( f, gJ) | is
attained on an interval J* of the form J*=� l

j=k Ij .

Proof. The function

F(x, y) :=( y&x)&1�2 |
y

x
f (t) dt, 0�x< y�1;

F(x, x)=0, 0�x�1;

is continuous on Y :=[(x, y): 0�x� y�1] for any f of the form (2.13).
This implies the existence of J* such that

|( f, gJ*) |=max
J

|( f, gJ) |. (2.15)

Clearly, |( f, gJ*) |>0 if f is nontrivial. We complete the proof by con-
tradiction. Assume J*=[a, t) and, for instance, t is an interior point of
Is=[b, d ). Apply Lemma 2.5 with I 1=[a, b), I 2=[b, d ), J=J*. We get
strict inequality which contradicts (2.15). Hence, t is an endpoint of one of
the intervals Ij . The same argument proves that a is also an endpoint of
one of the intervals Ij . This completes the proof of Lemma 2.6. K

Lemma 2.6 implies that for f of the form (2.13) all Rj ( f ) (see (1.4)) are
also of the form (2.13). Next, for f of the form (2.13) we have

max
J

|( f, gJ) |�max
Ij

|( f, gIj
) |�n&1�2 & f &.
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Consequently,

&Rm( f )&2�(1&1�n)&Rm&1( f )&2� } } } �(1&1�n)m & f &2,

which completes the proof of Lemma 2.4. K

The statement of Theorem 2.2 follows from Lemma 2.4 and Lemma 2.3.

3. AN EXAMPLE FOR THE n-GREEDY ALGORITHM

We consider in this section a generalization of the Pure Greedy Algorithm.
Take a fixed number n # N and define the basic step of the n-Greedy Algorithm
as follows. Find an n-term polynomial

pn( f ) :=pn( f, D)= :
n

n=1

c ig i , gi # D, i=1, ..., n,

such that (we assume its existence)

& f& pn( f )&=_n( f, D).

Denote

Gn( f ) :=Gn( f, D) :=pn( f ), Rn( f ) :=Rn( f, D) :=f &pn( f ).

n-Greedy Algorithm. We define Rn
0( f ) :=Rn

0( f, D) :=f and Gn
0( f ) :=0.

Then, for each m�1, we inductively define

Gn
m( f ) :=Gn

m( f, D) :=Gn
m&1( f )+Gn(Rn

m&1( f )),
(3.1)

Rn
m( f ) :=Rn

m( f, D) :=f &Gn
m( f )=Rn(Rn

m&1( f )).

It is clear that a 1-Greedy Algorithm is a Pure Greedy Algorithm.
For a general dictionary D, and for any 0<{�1, we define the class of

functions

Ao
{(D, M) :={ f # H: f= :

k # 4

ck wk , wk # D, |4|<� and :
k # 4

|ck | {�M {= ,
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and we define A{(D, M) as the closure (in H) of Ao
{(D, M). Furthermore,

we define A{(D) as the union of the classes A{(D, M) over all M>0. For
f # A{(D), we define the ``quasinorm''

| f |A{ (D)

as the smallest M such that f # A{(D, M).
We prove in this section that the n-Greedy Algorithm, like the Pure

Greedy Algorithm has a saturation property.

Theorem 3.1. For any orthonormal basis [.k]�
k=1 there exists an

element g such that for the dictionary D= g _ [.k]�
k=1 there is an element

f which has the property: For any 0<{�1

& f&Gn
m( f )&�| f | A{(D)�C({) n&1�{(m+2)&1�2.

Proof. Let n�2 be given. Define

g :=An&1�2 :
2n

k=1

.k+1�3 :
�

k=3n

(k(k+1))&1�2 .k ,

with

A :=\1
2

&
1

54n+
1�2

�(1�3)1�2.

Then

&g&2=2A2+1�(27n)=1.

Take

f :=An&1�2 :
3n&1

k=1

.k+2�3 :
6n&1

k=3n

(k(k+1))&1�2 .k .

1. First Step. We prove that for the dictionary D= g _ [.k]�
k=1 we

have

Gn( f, D)=u :=g+An&1�2 :
3n&1

k=2n+1

.k .
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First of all, it is easy to check that f &u is orthogonal to g and .k ,
k=1, ..., 3n&1, and

& f&u&2=1�9 :
�

k=3n

1
k(k+1)

=
1

27n
.

We shall prove that

_n( f, D)2�
1

27n

and that the only approximant which provides equality in this estimate is u.

(1) Assume that g is not among the approximating elements. Then
for 8=[.k]�

k=1 we have

_n( f, 8)2=A2(2n&1)�n+(4�9)(1�6n)>
1

27n
.

(2) Assume that g is among the approximating elements; then we
should estimate

$ :=inf
a

_n&1( f &ag, 8)2.

Denote

gs := :
�

k=s

(k(k+1))&1�2 .k .

We have

f &ag=(1&a) An&1�2 :
2n

k=1

.k+An&1�2

_ :
3n&1

k=2n+1

.k+(2&a)(g3n& g6n)�3&ag6n �3.

If |1&a|�1 then

_n&1( f &ag, 8)2�(1&a)2 A2>
1

27n
.

It remains to consider 0<a<2. In this case the n&1 largest in absolute
value coefficients of f &ag are those of .k , k=2n+1, ..., 3n&1. We have

_n&1( f &ag, 8)2=2(1&a)2 A2+((2&a)2+a2)�(54n). (3.2)
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It is clear that the right hand side of (3.2) is greater than or equal to
1�(27n) for all a, and equals 1�(27n) only for a=1. This implies that the
best n-term approximant to f with regard to D is unique and coincides
with u. This concludes the first step.

After the first step we get

f1 :=Rn( f )=(g3n&2g6n)�3.

2. General Step. We prove now the following lemma.

Lemma 3.1. Consider

hs :=1�3 :
�

k=s

ek(k(k+1))&1�2 .k , ek=\1, s�3n.

We have

_n(hs , D)2=1�(9(s+n)),

and the best n-term approximant with regard to D is unique and equal to

vn :=1�3 :
s+n&1

k=s

ek(k(k+1))&1�2 .k .

Proof. It is easy to verify that

&hs&vn&2=1�(9(s+n)),

and that vn is the unique best n-term approximant with regard to 8. We
prove now that for each a we have

_n&1(hs&ag, 8)2>1�(9(s+n)).

We use the representation

hs&ag=&aAn&1�2 :
2n

k=1

.k&a�3 :
s&1

k=3n

(k(k+1))&1�2 .k

+1�3 :
�

k=s

(ek&a)(k(k+1))&1�2 .k .

Let us assume that an (n&1)-term approximant to hs&ag with regard to
8 consists of +, 0�+�n&1, elements with indices k�s and n&1&+,
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with indices k<s. Then for the error e(a, +) of this approximation we
get

e(a, +)2�a2A2(n+++1)�n+a2(1�(3n)&1�s)�9+(1&|a| )2�(9(s++)).

(3.3)

Taking into account that

inf
a

_n&1(hs&ag, 8)2= inf
0�+�n&1

inf
a

e(a, +)2

we conclude that we need to prove the corresponding lower estimate for
the right hand side of (3.3) for all + and a. We have

e(a, +)2�a2�3+(1&|a| )2�(9(s++))�a2�3+(1&|a| )2�(9(s+n&1)).

(3.4)

We use now the following simple relation: For b, c>0 we have

inf
a

(a2b+(1&a)2 c)=
bc

b+c
=c(1+c�b)&1. (3.5)

Specifying b=1�3 and c=1�(9(s+n&1)) we get for all a and +

e(a, +)2�(9(s+n)&6)&1>(9(s+n))&1.

Lemma 3.1 is proved. K

Applying Lemma 3.1 to the second step and to the following steps we
obtain that

Rn
m( f )=1�3 :

�

k=3n+n(m&1)

ek(k(k+1))&1�2 .k

and

&Rn
m( f )&2=1�(9n(m+2)).

This relation and the estimate & f &�C imply (1.7) from Section 1.
In order to complete the proof of Theorem 3.1 it remains to note that

| f |A{ (D)�C({) n1�{&1�2. K
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4. SOME EXAMPLES OF HIGHLY REDUNDANT DICTIONARIES

In Sections 2 and 3 we studied dictionaries which differ only slightly
from an orthonormal dictionary. It is clear that if D1 /D2 then for any f
we have

_m( f, D2)�_m( f, D1).

However, the example of Section 3 shows that even a slight perturbation of
an orthonormal dictionary can result in a dramatic change of efficiency of
the corresponding greedy type algorithm.

In this section we consider some dictionaries that are far from orthogonal
dictionaries. In order to help the reader we formulate several statements on
approximation in Rn which are corollaries of the corresponding results in
[DT2]. We shall use these results later in this section.

Let Bn
2 denote the unit Euclidean ball in Rn. For a dictionary D and a

set F/Rn we define

_m(F, D) :=sup
f # F

_m( f, D); Gm(F, D) :=sup
f # F

& f&Gm( f, D)&.

Theorem 4.1. For any D in Rn with |D|=N we have

_m(Bn
2 , D)�CN&m�(n&m), m�n�2.

See [DT2], Corollary 2.2.

Theorem 4.2. For any N there exists a system D, |D|=N, such that

_m(Bn
2 , D)�min(1, (2(N1�n&1)&1)m).

See [DT2], Theorem 3.1. Consider the system

V :=[g= y�&y&2 , y=( y1 , ..., yn){(0, ..., 0), yj=&1, 0, 1, j=1, ..., n].

Theorem 4.3. We have

_m(Bn
2 , V)�n1�23&m.

See [DT2], Theorem 4.1.

Theorem 4.4. We have the estimate

Gm(Bn
2 , V)�\1&

1
1+ln n+

m�2

.
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See [DT2], Theorem 7.1.

Theorem 4.5. For any m�3(1+ln n)�16 we have

Gm(Bn
2 , V)�1�2.

See [DT2], Theorem 7.2.
In this section we are going to discuss some applications of the results

about m-term approximation in Rn to approximation of functions. For
simplicity of notation we consider approximation of functions of a single
variable. Denote by T(n) the set of real trigonometric polynomials

t(x)= :
n

k=0

(ak(t) ck(x)+bk(t) sk(x)),

where ck(x) :=cos kx, sk(x) :=sin kx for k=1, 2, ... and c0(x) :=1�2, s0(x)
#0. We set up a one-to-one correspondence between T(n) and R2n+1.
Define Tn : R2n+1 � T(n) by

Tn( y0 , ..., y2n)= :
n

k=0

( y2kck(x)+ y2k&1sk(x)),

where the term y&1 s0(x) disappears because s0(x)#0. We keep this term
for notational convenience. Considering the standard L2 -norm in T(n)

&t&2
2 :=&t&2

L2
:=

1
? |

2?

0
|t(x)|2 dx

we get by Parseval's Identity

&Tn( y)&L2
=&y&l2

.

The above standard construction allows us to reformulate the l2 results in
R2n+1 as the corresponding L2 results in T(n). For example, Theorem 4.2
takes the form

Theorem 4.6. For any N there exists a system D, |D|=N, of trigono-
metric polynomials in T(n) such that for any t # T(n) we have

_m(t, D)2�min(1, (2(N1�(2n+1)&1)&1)m) &t&2 .

Let us take an arbitrary increasing sequence [nk]�
k=1 of natural numbers

and consider the sequence Nk=42nk+1, k=1, 2, .... Denote by Q(nk) a
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system with |Q(nk)|=Nk which is provided by Theorem 4.6. Then we have
for any t # T(nk)

_m(t, Q(nk))2�(2�3)m &t&2 , m=1, 2, ... . (4.1)

Consider the following system in L2

Q := .
�

k=1

Q(nk).

It turns out that this system is good for approximation of functions in L2

regardless of their smoothness.

Proposition 4.1. For each function f # L2 and any =>0 there exists
g # Q such that

& f&( f, g)g&2�(2�3+=) & f &2 .

Proof. Denote by Sn the orthogonal projector onto T(n), i.e., Sn( f ) is
the n th Fourier sum of f. Find k such that

& f&Snk
( f )&2�= & f &2 . (4.2)

By (4.1) with m=1 we find g # Q(nk) such that

&Snk
( f )&(Snk

( f ), g) g&2�2�3 &Snk
( f )&2 . (4.3)

Approximate now f by ( f, g) g. Denoting Un( f ) :=f &Sn( f ) we get

& f&( f, g) g&2=&Snk
( f )&(Snk

( f ), g) g+Unk
( f )&2

�&Snk
( f )&(Snk

( f ), g) g&2+&Unk
( f )&2�(2�3+=) & f &2 ,

which proves Proposition 4.1. K

We say that a system D admits a Greedy type q-fast, 0<q<1, algorithm
if for each f # L2 we can find g # D such that

& f&( f, g) g&2�q & f &2 .

Proposition 4.1 shows that for any =>0 the system Q admits the Greedy
type (2�3+=)-fast algorithm. In particular, this implies

_m( f, Q)2�(2�3)m & f &2 .

Let us consider now one special simply defined system in L2 . Denote by
TV the set of all trigonometric polynomials t, &t&2=1, whose non-zero
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Fourier coefficients are equal in absolute value. The restriction of this
system onto T(n) will be denoted TV(n). It is easy to see that the system
TV(n) coincides with Tn(V) with V defined for R2n+1. Recall that V was
defined in the beginning of this section and its cardinality (in R2n+1) is
32n+1&1. Note that the above described system is not as big as the system
Q. We prove some results for TV which are qualitatively different from
those for Q.

Proposition 4.2. For any 0<q<1 the system TV does not admit a
Greedy type q-fast algorithm.

Proof. The statement of Proposition 4.2 can be derived from the follow-
ing example which was constructed in the proof of Theorem 7.2 in [DT2].
Fix n and consider

f = :
n

k=1

zk ck(x),

where z=(z1 , ..., zn) is defined as follows z1 :=1, zk :=k1�2&(k&1)1�2,
k=2, 3, ..., n. Then

&z&2
2=1+ :

n

k=2

(k1�2&(k&1)1�2)2�1+ :
n

k=2
\ 1

2k1�2+
2

=1+
1
4

:
n

k=2

1
k

�1+
1
4 |

n+1

2

dx
x

�
1
4

(1+ln n);

and for each l�n,

:
l

k=1

zk=l1�2,

which implies that for each g # TV we have

|( f, g) |�1.

Therefore, for any g # TV we have

& f&( f, g) g&2
2=& f &2

2&( f, g) 2�(1&4�(1+ln n)) & f &2
2 .

Taking n such that 1&4�(1+ln n)>q completes the proof. K
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We study the efficiency of TV for classes of smooth functions. Define
H r

2 , r>0, as the class of functions f # L2 which allow a representation

f (x)= :
�

s=1

ts(x), ts # T(2s), &ts &2�2&rs, s=1, 2, ....

Theorem 4.7. There exist two absolute positive constants A1 and A2

such that

C1(r) e&A1m�_m(H r
2 , TV)2�C2(r) e&A2 \m,

where \ :=min(r, 1�2).

Proof. Let us begin with the lower estimate. It is clear that for f # T(n)
we have

_m( f, TV)2=_m( f, TV(n))2 .

Next, the set of trigonometric polynomials t # TV(n) satisfying &t&2�
(2n)&r is embedded into H r

2 . Denote by T(n)2 the unit L2 -ball in T(n).
For a given m take n=m and use Theorem 4.1 for R2n+1. This gives

_m(H r
2 , TV)2�_m(T(m)2 , TV(m))2 (2m)&r=(2m)&r _m(B2m+1

2 , V)

�C(2m)&r 3&(2m+1) m�(m+1)�C1(r) e&A1 m.

We proceed to the upper estimate. For a fixed n of the form n=2l we
represent f in the form f =Sn( f )+Un( f ) and get from the definition of the
class H r

2

&Un( f )&2� :
�

s=l+1

2&rs�C(r) 2&rl,

and

&Sn( f )&2�& f &2�C(r).

We approximate Sn( f ) using Theorem 4.3. We get

_m(Sn( f ), TV(n))2�C(r)(2n+1)1�2 3&m.

Selecting n such that

n&r �� n1�23&m
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we obtain

_m(H r
2 , TV)2�C2(r) 3&mr�(r+1�2)�C2(r) e&A2 \m.

Theorem 4.2 is proved. K

Let us discuss the efficiency of the Pure Greedy Algorithm with respect
to the system TV. We prove first that this algorithm is defined correctly,
namely, we prove the existence theorem.

Theorem 4.8. For any f # L2 there exists a function g # TV such that

( f, g) = sup
g # TV

|( f, g) |.

Proof. Let

f (x)= :
�

k=0

( y2kck(x)+ y2k+1sk(x)).

The assumption f # L2 implies

:
�

i=0

y2
i =& f &2

2<�.

Let [zk]�
k=1 denote the decreasing rearrangement of [ | yi |]�

i=0 . It is easy
to see that the problem of finding supg # TV |( f, g) | is equivalent to the
following: Find

sup
n

n&1�2 :
n

k=1

zk .

We prove the existence of a solution to this last problem for z :=[zk]�
k=1

# l2 . It is sufficient to prove that

lim
n � �

n&1�2 :
n

k=1

zk=0. (4.4)

Indeed, we have

n&1�2 :
1�k<n1�2

zk�n&1�4 \ :
1�k<n1�2

z2
k+

1�2

�n&1�4 &z&l2
, (4.5)
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and

n&1�2 :
n1�2�k�n

zk�\ :
k�n1�2

z2
k +

1�2

. (4.6)

The relations (4.5) and (4.6) under assumption z # l2 imply (4.4). K

Theorem 4.9. There exist two absolute positive constants A3 and A4

such that

C3(r) e&A3\m�Gm(H r
2 , TV)2�C4(r) e&A4(rm)1�2

where \ :=min(r, 1�2).

Proof. We begin with the lower estimate. Let us use Theorem 4.5. We
have

Gm(H r
2 , TV)2�(2n)&r Gm(T(n)2 , TV(n))2=(2n)&r Gm(B2n+1

2 , V).

(4.7)

Define n as the smallest integer satisfying the inequality m<3(1+
ln(2n+1))�16. Then, for this n using Theorem 4.5 we get

Gm(B2n+1
2 , V)�1�2

and by (4.7)

Gm(H r
2 , TV)2�(2n)&r�2�C3(r) e&A3rm.

This gives the lower estimate for small r. The case r>1�2 follows from
Theorem 4.7.

We prove now the upper estimate. Using Theorem 4.4 we establish the
following lemma.

Lemma 4.1. Let Cr denote a constant such that for f we have

&Un( f )&2�Crn&r.

Denote L(n) :=1+ln(2n+1). Then for each such function f with & f &2�
(2L(n))1�2 Cr n&r we can find a g # TV such that

& f&( f, g) g&2
2�\1&

1
2L(n)+ & f &2

2 .
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Proof. Represent f =Sn( f )+Un( f ) and find by Theorem 4.4 g # TV(n)
such that

&Sn( f )&(Sn( f ), g) g&2
2�(1&1�L(n)) &Sn( f )&2

2 . (4.8)

Then

& f&( f, g) g&2
2=&Sn( f )&(Sn( f ), g) g&2

2+&Un( f )&2
2

�(1&1�L(n)) & f &2
2+(2L(n))&1 & f &2

2�\1&
1

2L(n)+ & f &2
2 .

(4.9)

Lemma 4.1 is proved now. K

We need now the following general property of the system TV. For any
set Y/Z we denote by SY the orthogonal projector onto the subspace of
trigonometric polynomials with frequencies in Y.

Lemma 4.2. For any set Y/Z and any f # L2 we have

&SY ( f &G( f, TV))&2�&SY ( f )&2 .

Proof. We prove this lemma by contradiction. Denote h :=G( f, TV)
and assume that for some Y we have

&SY ( f &h)&2>&SY ( f )&2 .

Let X :=Z"Y. Then we have

& f&SX (h)&2=&SX ( f &h)&2+&SY ( f )&2

<&SX ( f &h)&2+&SY ( f &h)&2=& f&h&2. (4.10)

Next, SX (h) has the form ag with some g # TV. Therefore (4.10)
contradicts the following minimizing property of h:

& f&h&= inf
a # R, g # TV

& f&ag&.

This completes the proof of Lemma 4.2. K

Proof of Theorem 4.9 (Continuation). For a given m find n satisfying

\1&
1

2L(n)+
m

�� L(n) n&2r.

Denote

fk :=f &Gk( f, TV), k=1, ..., m.
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Using the assumption f # H r
2 we get

&Un( f )&2�Crn&r.

If & f &2�(2L(n))1�2 Crn&r then we have

& f&Gm( f, TV)&2�& f &2�(2L(n))1�2 Crn&r.

If & f &2�(2L(n))1�2 Crn&r then we apply Lemma 4.1 and get

& f1&2�\1&
1

2L(n)+
1�2

& f &2 .

Applying Lemma 4.2 we obtain

&Un( f1)&2�&Un( f )&2�Crn&r.

Continuing this process we get

& f&Gm( f, TV)&2�C(r) min {\1&
1

2L(n)+
m�2

, (2L(n))1�2 n&r=
�C4(r) e&A4(rm)1�2

.

Theorem 4.9 is proved. K
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